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Time in a quantum mechanical world 

Abstract. In quantum mechanics it is usual to represent physical reality as a vector in 
Hilbert space at a particular time, with evolution being governed by SchrGdinger's equation 
which involves an externally imposed Iime parameter, This !ads  !G dimcolties if one wishes 
to regard the universe as a quantum mechanical system, because there should no time 
external to such a system. The approach in this paper is to represent the totality of reality 
as a vector in Hilbert space. We show haw time evolution follows, where time now is 
defined in terms of the states of a quantum mechanical flock which is part of the system. 
Rather than the correlation between the clock states and the states of the rest of the system 
arising because bath are governed by an imposed law involving an external time parameter, 
it is seen that this correlation is of the separation-independent Einstein-Padalsky-Rosen 
type. The total reality vector, which incorporates the whole history of the system, is shown 
to he a zero-energy eigenstate of the system Hamiltonian. We discuss systems of finite and 
infinite lifetime, and are able to answer the question: what was the state before the initial 
state? We conclude that the quantum mechanical system of this paper is a reasonable 
representation of the observed universe. 

i. introductlon 

In the canonical quantization approach to gravity (see, for example, Dirac 1958,1959, 
Komar 1967, Isham and MacCallum 1975, Alvarez 1989 and references therein) some 
well known difficulties arise. One of these is that the invariance of the ten classical 
field equations under arbitrary curvilinear coordinate transformations implies that four 
or" ihese equaiions are consirainis and ihe Eamiiionian is efieciiveiy zero. Tne usual 
quantization procedure yields the quantum mechanical result that the system is in a 
zero energy eigenstate of the Hamiltonian operator. Application of the Schrodinger 
time-evolution equation involving the corresponding Hamiltonian operator then leads 
to a 'frozen' dynamics for which nothing seems to happen. As a possible resolution 
of this difficulty, it has been considered for some time (Alvarez 1989, Unruh and Wald 
,non\  &I.̂ . &I.̂ --^l.l"-. --.. c---. *I.̂ :.-.I-":*:-I ^I *I.- ".."*e... ,.c ".. 
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time parameter, with the Schrodinger equation being applied as a law of evolution in 
terms of this external time. While this procedure may be appropriate for a system 
within the universe, it is doubtful whether it can be applied to the universe itself. If 
one is dealing with such a system it is reasonable to assume that the Hamiltonian must 
include all observers and the standard clock which defines time measurement (Page 

approach should ideally already incorporate Schrodinger's equation or its equivalent, 
that is, there should be no need to postulate the form of any time evolution operator, 
even that applying to the clock. Another difficulty in matching general relativity to 
quantum mechanics is that physical reality in usual quantum mechanical theory, that 
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is, that which is represented by a ray in Hilbert space, refers only to a particular instant 
of time. In general relativity, time is simply a label attached to a spacelike hypersurface 
and only histories have physical meaning (see, for example, Unruh and Wald 1989). 

In this paper we approach the problem entirely from a quantum mechanical point 
of view. We begin with the proposition that the totality of physical reality can be 
represented by a single vector in Hilbert space. From this we derive a quantum 
mechanical model which incorporates time evolution and which appears to be appli- 
cable to the world we observe. 

2. Expansion of the history vector 

Without defining precisely what we mean by the totality of physical reality, we denote 
it by S and let it be described by  a vector in some Hilbert space '4'. We let the 
dimensionality of this Hilbert space be s + 1,  remembering that for S to pertain to the 
observed universe, s should be extremely large or infinite. For the present, however, 
we keep s arbitrary to maintain generality and consider the limit as s + m later. 

There are s mutually orthogonal vectors which are orthogonal to the vector describ- 
ing S. We label this latter vector as iEo) and the complete set of vectors as IEn) with 
n = 0, 1,  . . . , s. From these vectors we can construct a Hermitian operator 

A= I E.IEAE,I (2.1) 
"=O 

which has eigenvalues E., which at present are totally arbitrary. We assign the value 
Eo = 0, which gives us  

f? Eo)=O. (2.2) 

We do not assign particular values to the remaining E, but restrict them to satisfy 

E. = p,SE (2.3) 

where p .  are arbitrary non-zero integers and SE is a small common factor. From above 
p o =  0. It is clear that E. with n # 0 can be made, to within an error of SE, as close to 
any real value we choose by a suitable choice of p.. 

The vector describing S can be expanded as 

IEo)=G' I a.lE.)S,o (2.4) 
"=O 

where r < s. The expansion of the Kronecker delta 

which can be checked by summing the geometric progression, yields 

where 

I+,,,)= a. exp[-imp,2a/(s+l)]IE.)=exp[-ifjmSE-'2.rr/(s+ I)]\&,) (2.7) 
n=o 
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with 

If we specify that the sum of the squares of the moduli of a, is unity, then all the I+,,,) 
are normalized. 

We see, therefore, that the vector I&,) describing S is proportional to 

I+O)+l+ l )+ .  ..+ I+,,,)+ ...+ I+*) (2.9) 

where each I+,,,) is a normalized superposition of state vectors I€.) and which can be 
obtained from I+,,-,) by the action of the unitary operator exp[-iHGE-'Zlr/(s+ I)]. 
For reasons which will become apparent later we refer to the superposition (2.9) as a 
'history' vector or history state. 

3. Time 

Let us now suppose that S is such that each of the states 14M), . . . , in 
a continuous section of the superposition (2.9) can be factorized into the product of 
two states which are superpositions of basis states of two subspaces V B  ana q-c wnose 
tensor product is the Hilbert space 9, where Y B  has dimensions b + 1 and Wc has 
dimensions c + l ,  with ( s + I ) = ( b + l ) ( c + l ) .  That is, we can write 

I&,)= l&,)lG) for M S rns M + P .  (3.1) 

The fact that and IC,,,) are completely in 'PB and Yc respectively for all the values 
of m shown in ( 3 . 1 )  allows us to factorize the unitary operator transforming I+,,,) to 
another state in this section of the history state into two unitary operators involving 
only the basis states of YB and Yc respectively. Explicitly we can define 

kc = Z: E,IE&E,I (3.3) 

(fib+fi<)l'$m) for M s m s M + P .  (3.4) 

j - 0  

where the ( S +  1) states ~ E b i ) ~ E C j )  form the states (E.). Then 

Consistently with this and with (2.7), we can write 

IB,,,)=exp[-ifi~jbsE~'2lr/(s+ 1)11B,) 

= exp[-ifiCSE-'2lr/(s + I)]lC,,,) 

for the  range of m in (3.4). 
we caii the factors in (Xi) the states of subsystems B ana C respecriveit w e  now 

particularize to a specific quantum system C by letting the eigenvalues of H, in (3.3) 
take equally spaced values 

-.. 

E, =jhE (3.7) 
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where AE is constant integer multiple of SE. Further, we let the state IC,) be an equal 
superposition of the basis states of Vc: 

Ic,)=(c+l)-I 1 IE,). 
j-0 

There are c +  1 such states which are mutually orthogonal: 

(3.8) 

= exp[ -ikfiCAE-’2r/(c + I)]lC,) (3.9) 

where k takes the values 0, I , .  . . , c. The orthogonality of these states, which we call 
phase states, can be checked directly (compare with the orthonormal set of oscillator 
phase states discussed by Pegg and Barnett 1988). The next state, that is with k = c +  I, 
is identical to IC,) and so on. We define a special case, which we call an ideal system 
C, by setting 

PE = (b+ 1)SE. (3.10) 

The maximum eigenvalue of & for this system is CAE. The condition p .  < s  in (2.5) 
restricts the maximum eigenvalue sum E. to be no greater than sSE, from which we 
find that the maximum possible eigenvalue of system B is AE. This ideal case is thus 
quite extreme. 

Substituting P E  from (3.10) into (3.9) and comparing with (3.6), we find that 
1Cnn+,J for k < P is both one of the c +  1 orthogonal phase states and is also a factor 
of a term in the history state. Thus the relevant section of the history state (2.9) can 
be written as 

IBnn)IC,)+ IBnn+i)ICnn+i)+. . .+ I B M + ~ ) I C M + ~ ) + .  . .+ IBM+P)ICM+P). (3.11) 

We note that the state IC,,,,,) is identical with the state IC,,,), corresponding to one 
complete period, so it is convenient to set P S  c to ensure that all phase states of the 
ideal system C is this history section are orthogonal. 

The state (3.11) exhibits an Einstein-Podolsky-Rosen (EPR) type of correlation. In 
the EPR paradox, two spatially separated systems A and D are in a correlated state 
~ A , ) ~ D l ) + ~ A 2 ) ~ D 2 ) ,  Provided IA,) and IA,) are orthogonal, then if system A is found 
in IA,), the system D must be found in ID,). In (3.11) the orthogonality of the states 
IC,,,) ensures that there is a distinct phase state for each value of m, that is, there is 
no overlap between phase states in different terms. We note that the states IE,,,) in 
(3.11) need not be orthogonal. Thus, if we have two different states of E, these must 
be associated with two different phase states, but two different phase states can be 
associated with the same state of E. For example if (B,IE,,,+,)= 1 then both IC,,,) and 
IC,,,+,) are associated with IB,,,). Thus the system C states, by virtue of their orthogonal- 
ity, ‘set the conditions’ for the state of the rest of the system and thus the value of m 
associated with IC,,,) should, in accord with the argument of Unruh and Wald (1989), 
make a suitable choice for a label to serve as a time value indicator. We therefore 
define a time interval as being proportional to a difference in m value, that is 

A t  = &Am (3.12) 

where 6t  is a constant determined by the units chosen. Then for example, the time 
difference between the states IC,) and ICMfq) is qSf. Because the time differences are 
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defined in terms of phase states of the ideal system C, we call this system an ideal 
clock. Because each state le,,,) in (3.11) is associated with one of the orthogonal clock 
states, we can also attach to each state the time value of the associated clock state. 

Having defined time differences, for states of both systems C and B, it is now 
reasonable to refer to the generators of the shifts in the time label as Hamiltonians 
for these systems. From (3.5) and (3.6), it is clear that, at least to within the same 
constant factor, fib and gC are the Hamiltonians for the system B and the clock 
respectively. Of course this only holds for the interval, which we can now regard as a 
time interval, specified by (3.1) during which the clock C and the system B, which we 
might interpret as the rest of the universe, exist as separately identifiable systems whose 
states obey (3.1). From (3.4), we see that during this interval these two systems are 
non-interacting, that is-we can write the sum of the two individual Hamiltonians as 
the total Hamiltonian H. The correlation between states of B and C at different times 
arises not through interaction but is an EPR type correlation. A further factorization 
of the states IB;) similar to (3.1) for some period enables the introduction of an 
'observer' as part of the overall quantum system. The change in state of this observer 
with m value, that is with time, will also correlate with the change in clock states. 

We have mentioned that with a change in the value of m of c+l,  the state of the 
clock becomes again identical with its original state. This means that the period of the 
clock is (c+l)St.  Equating this to 2 a / w  where w is the angular frequency, allows us 
to write the exponent in (3.9) as 

-ik&AE-'Zr/(c+l) = -ih-'&kSt (3.13) 

where h is defined as the ratio of AE, which we can now call the gap between successive 
energy states of the clock, to the angular frequency. 

Further, from (3.10); (2.7) can then he written as 

Id,,,) = exp[- ih- 'hn~t ] l+~) .  (3.14) 

We can, of course, choose our zero of time to correspond to any state and still be 
consistent with (3.12). For convenience we define t = mSt, giving 

bm) = e v - i f i - ' ~ ~ l I ~ o ) .  (3.15) 

The total lifetime TL which can be ascribed to the total system, that is the time period 
between I&) and I&) is equal to 

sat = s2.rrh/[AE(c + l)] 

that is 

TLSE = s 2 a h / ( s + l )  (3.16) 

where we have used, from (3.10), 

( c +  1)AE = ( s +  ])SE. (3.17) .,... :-. l .C. . .JAI_. .  L . .I .  I F \  ... L:.L .... : L . . . I  .I^._ q:... .r navirig uciineu Lime, we n o w  sec wriy we call Ice), w m s n  ucscri~cs inr rurainy 01 

reality S and which has the form (2.9), a hbtory vector. This vector, which we now 
know to be an eigenstate of the Hamiltonian H with zero eigenvalue, does not represent 
the state of the universe at a particular time, instead it is the superposition of all such 
states at all possible distinct times of a n  ideal clock. 



4. Time evolution equation 

Writing h,+,)-I&,) as SI&,), we obtain from (3.15) 

~ l q ~ , ) =  [exp(-ifi-'hiSl)- 1~16~). (4.1) 

if tire eiieigy rigenvaiues En associated wiih the siates [E,,) with signiiicaniiy non-zero 
coefficients in the expansion of I&) are such that E,, << a/&, we can obtain from (4.1) 

s~#+,,)/sz =-ih-'&+,,) (4.2) 
with the obvious parallel to the Schrodinger equation. Corresponding expressions 
would apply for SIC,) and 61B,,J in terms of Hc and fiB under the same restriction. 
This restriction, however, is quite important. For example, for the ideal clock, the 
component states of IC,,) are equally weighted and the highest state has, from (,3.7), 
energy E,  such that 

&,,St=c27rfi/(c+1), (4.3) 

AESt =Zrrh/(c+ 1). (4.4) 

where .%'e haze os& 'he x-.a!t, %,hiCh m G w s  ficr7: <3.!3), :ha: 

Thus the Schrodinger equation similar to (4.2) does not apply to the ideal clock itself. 
The Schradinger equation may be applicable, however, for isolated subsystems with 
energies substantially less than sSE, which from (2.3) and the restriction in (2.5) is the 
maximum allowed energy Emas of the whole system, and which obeys the relation 

Em.,& = s2rrh/(s + I )  (4.5) 
which follows from (3.10) and (4.4). The Schrodinger differential equation can only 
be obtained, of course, if we can let St  tend to zero. Conditions under which this is 
passible-are discussed below. 

5. 0 t h  clocks 

The resolution time Sf of the ideal clock, that is the time between successive orthogonal 
siaies, is achieved by choosing an impracucsiiy high vaiue fur AE of j b i  ij8E. As 
discussed earlier this choice restricts the maximum possible energy of system B to be 
equal to the lowest non-zero energy eigenvalue of the clock. If we wish to use system 
B to represent the rest of the universe, a more practical clock would have AE= 
( b + l ) S E / K  where K has a vatue greater than unity such that ( h +  l ) / K  is an integer 
in accord with Q,?), which means that K is rational. The frequency w of this clock 
is correspondingly reduced by a factor X,  and the resolution time is Kat. To study the 
action of a practical clock, let us choose K to be an integer greater than unity. We 
then find in the section of the history state corresponding to (3.11) that neighbouring 
clock states are not orthogonal. However, IC,,,) is orthogonal to ~ C M + K )  and /C,W+,K) 
and so on. A clock reading corresponding to a state \C ,+X) ,  for example, can be 
obtained not only if the clock is in this state, but also i i  it is in any oi  a number oi 
neighbouring states with a significant overlap with this state. We can show that such 
states are confined to nearby states IC,) with m varying in an approximate range of 
width K centred on M. It follows that the state of E is not precisely determined, but 
has a high likelihood of being one of the states between I B M + . K / ~  and ~ B M ~ X , ~ .  Any 
nhv*ird =I,=*-- ..Ah - ~ 7 ~ l J ~ ~ - e ~ ~ ~ ~ d  P ~ P I I I V  Ie'v~Je ran cnnstitute a Cl& Of the type y..,".-... YJ",C1.. n,<L1 C'LYU..J~"YY"II -..-.e, .-.-. 1 
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discussed here. For example as the number of levels increases, the clock states approach 
the phase states of the harmonic oscillator (Pegg and Barnett 1988), which has long 
formed the basis for practical clocks. For a finite number of levels, the system also 
corresponds to a quantum clock similar to that described by Peres (1980). 

I 

j 
6. Limiting cases 

For I&,) to represent the state of the universe at a particular time, the dimensionality 
s f  1 of the Hilbert space '4' must be extremely large. Whether or not it is infinity is, 
of course, impossible to determine observationally. Correspondingly we would expect 
SE and St to be very small. One other parameter of interest is the lifetime TL of the 
universe. All of these are related by the expressions we have derived, and we consider 
various possibilities below. 

We consider first the case where TL tends to infinity, corresponding to a universe 
with an infinite lifetime. From (3.16) this implies immediately that SE + 0  and thus, 
because the maximum allowed energy of the system is sSE, this means that s must 
approach infinity as well, in  order to allow non-zero energy eigenstates. The result 
SE +O means that the difference between possible energy configurations of subsystems 
and that obtainable by having a completely free choice of energy eigenvalues tends to 
zero. Thus the universe can contain subsystems representing physical systems such as 
hydrogen atoms for example, with energy levels precisely in accord with present 
theoretical models. The effect on Sf of letting TL tend to infinity is indeterminate 
because Sf = TJs, so we cannot deduce the size of the minimum time step. However 
(4.5) shows that it must be very small for any reasonable cosmological model. Thus 
in a universe with an infinite lifetime, the dimensionality of the Hilbert space is infinite, 
our condition (2.3) does not restrict possible energy level configurations and the 
minimum time step of an  ideal clock is 2?rh/E,.,. 

The other possibility is that TL is finite. From (3.16) it follows that SE must he 
non-zero, hut there is no restriction on s. This means that there is now a finite difference 
between the energy eigenvalues of our approach and those obtainable by an entirely 
free choice. From conventional quantum mechanics, however, we know that an experi- 
ment to measure this difference would occupy a time period of at least 2?rhlSE, which 
from (3.16) is the lifetime of the universe, so there is no observational reason against 
the applicability of our approach to a universe with a finite lifetime. There are two 
possibilities for s with T, finite: ( a )  s tends to infinity or (b) s is finite. From Sf = TL/s, 
we see that in case ( a )  61 must approach zero and thus, for example, we can recover 
Schrodinger's time-dependent differential equation from (4.2) for a finite energy subsys- 
tem. In this case there is a countable infinity of component states with different time 
labels in (2.8) making up the whole history state of the universe. For case ( b )  Sf is 
non-zero, there are a finite number of component states with different time labels and 
we have at best a difference, rather than a differential, equation to describe the time 
evolution. 

1. Discussion 

In  this paper we have examined the properties of a vector /Eo)  which satisfies (2.2) 
where H has now been shown to be the Hamiltonian operator. We have found that 
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this vector is a superposition of vectors each of which can represent, to within an error 
which is in principle unobservable, states of our observed universe at particular times. 
For subsystems which have an energy much less than the maximum allowed energy 
of the universe, the variation of these states from time to time can be described by 
Schrodinger's equation. For the whole universe the time development is still given by 
the simple unitary operator exp(-ih-'&t), which transforms I&) to I+,+,). 

The expansion 

I€,)=. . .+I+,-,)+l+b,)+/+,+ll+. . . (7.1) 
has a simple explanation. If (2.2) holds, that is, if lE,J is a zero energy eigenstate of 
fi, then 

exp(-ih-'fiSt))E,) = )Eo) (7.2) 
and \Eo) is also an eigenstate of the time displacement operator. Applying the time 
displacement operator in (7.2) to (7.1) means, ignoring the end states for the moment, 
changing I+,-,) to and I&) to I&,+,) and so on, which clearly leaves (7.1) 
unaltered. This will be precisely true if the history state (7.1) extends from -m to +m. 
The interesting question which arises is for a universe with a finite or semi-infinite 
lifetime. To examine this, we first choose an arrow of time by saying that the state 

= exp(-ih-'fi8r)l+,) (7.3) 

is the state 'after' I+,). The arrow thus points in the direction of increasing m in (2.9). 
To obtain the state before I+,), we apply tbe inverse operator. There is now meaning 
to the question: what is the state before I&)? It would be tempting, if one were to 
revert to some external time reference, to say that, because there is no state before I&) 
in (2.9), the action of exp(-ih-'fiSf) on I+,,,) must be zero, in a way analogous to 
that in which the boson annihilation operator destroys the vacuum state thus preventing 
bosons being found in negative energy states. This cannot apply here, however, because 
from the definition (2.1), 6 is Hermitian and thus the time shift operator and its 
inverse are definitely unitary. Indeed, the action on can be calculated directly. 
From (2.8) 

exp(ih-'fi8t)lq50) = a, exp(ih-'E,Sf)lE,). (7.4) 
" = O  

Substitutingfrom (2.3), and using (3.16) with Sf = TL/s allows us to write the exponent 
in (7.4) as 

ih-'E,St =ip,2v/(s+ 1) =ipn2v-ip,2ns/(s+ 1). (7.5) 

(7.6) 

Thus, because p .  is an integer, 

exp(ih-'EJf) = exp[-ip,Z?is/(s+ I)] = exp(-ih-'E.rSt). 

Substituting into (7.4) then yields 

exp(ih-'fiSt)[40) = exp(-ih-'fis8t)(4d = 14J (7.7 ) 
which is just the final state of the system. Similarly the state just after the final state 
14,) is the initial state I&). This result, though perhaps surprising, is not unreasonable. 
The expression H ( E , ) = O  with fi Hermitian requires that \Eo) must be an eigenstate, 
with eigenvalue unity, of the time displacement operator. If the series (7.1) is finite, 
the state (E,) is indeed invariant under a shift of I+,,,) to for m # s and a shift 
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of I+*) to 140). Indeed this would seem to be an unavoidable consequence. Of course, 
by letting the lifetime TL be long enough, we can postpone the return to the initial 
state indefinitely. We might comment that this mathematical periodicity for a finite 
lifetime system does not necessarily imply a reversal of the arrow of time in the later 
part of the life of the system, that is, the next to last states I+*-,), . . . , are not 
necessarily the same as the first states I&), I+,), . . . . Nor does the apparent jump from 
the final to the initial state represent a gross physical discontinuity. These states are 
connected by a simple unitary transformation and the apparent jump is of the type 
which occurs when the minute hand of a clock ‘jumps back‘ to zero instead of 
reading 60. 

S. Conclusion 

This paper is not an attempt to quantize the classical theory of general relativity; 
instead it is a purely quantum mechanical approach based on representing, by a vector 
in an abstract Hilbert space, the totality of reality rather than reality at a particular 
time. While it does make contact with other approaches through (2.2), that is not its 
main purpose. The universe is essentially quantum mechanical in nature, and classical 
theories should ideally arise as limiting cases of quantum mechanics. The reasonably 
simple approach of this paper provides answers to some questions. For example, the 
correlated behaviour between a clock and another physical system, which occurs 
irrespective of their spatial separation, is usually considered to arise because both are 
governed by a law involving some external time parameter. In our approach this 
correlation is seen to be simply of the EPR type which, as is well known, is also 
separation independent. This correlation is a natural consequence of the whole history 
of the universe being expressible as a single vector which is a superposition of a large 
number of states with different time labels. Further, the way in which these component 
states vary with the time label is a consequence of the theory, rather than an additional 
postulate. That is, the single history vector already contains the seeds of Schrodinger’s 
equation. Time has been defined in terms of the states of a particular type of quantum 
clock, of which the harmonic oscillator is a particular example. If a different type of 
clock structure were used the clock states may not have the same type of spread over 
history as those of the clock we have chosen, that is, such a clock might not run 
uniformly relative to our clock and the Schrodinger equation would have a different 
form. 

While we conclude that the quantum mechanical system discussed in this paper 
can represent the observed universe, there are of course also questions left unanswered, 
These include the role of the observer and the unidirectionality of the arrow of time, 
for example, why an observer’s amount of memory changes monotonically with a 
monotonic change in time values. Our approach does not seem to suggest any underlying 
reason for this. Concerning the question of the collapse of the wavefunction associated 
with an act of observation, our approach does not accommodate this concept in the 
literal sense. Any observer is clearly part of the overall quantum system, and the 
changes of state of the total system comprising the observer, the system observed and 
the clock have a well defined time evolution which does seem to accommodate 
discontinuous changes of state of any one component, unless, perhaps, such a change 
is somehow balanced by a sudden change in another component of the system, or 
there is a sudden redefinition of what constitutes each component. The simplest 



3040 D T Pegg 

postulate consistent with out approach is that the collapse simply does not occur. We 
d o  not explore this any further here. 

Finally we should remark that, while some of the ideas incorporated in and arising 
out of this paper have been considered in other contexts and from different viewpoints 
by a number of other authors, what is presented here is a reasonably straightforward 
mathematical formalism which unifies such concepts as consequences of the very 
simple notion that the totality of reality can be represented as a vector in Hilbert space. 
There is no need to introduce an external time parameter, indeed, time is part of the 
reality represented by this vector. 

Acknowledgments 

I thank the Physics Department, University of Queensland, where part of this work 
was done, for its hospitality. The use of a history state expansion to incorporate time 
evolution follows a suggestion by Professor G W Series, and the work has benefited 
from discussions with Dr S M Barnett. 

References 

Alvarez E 1989 Rea Mod. Phys. 61 561 
Dirac P A M 1958 Proc. R. Soc. A 246 333 
- 1959 Phys. Reo. 114 924 
Isham C and MacCallum M A H 1975 Quantum Gravity ed C J Isham, R Penrase and D W Sciama (Oxford: 

Komar A 1967 Phys. Rev. 153 1385 
Page D N and Wootters W K 1983 Phys. Rev. D 28 2960 
Pegg D T and Barnett S M 1988 Europhyr. Left. 6 483 
Peres A 1980 Am. J. Phys. 48 552 
Unruh W C and Wald R M 1989 Phys. Rev. D 40 2598 

Clarmdon) 


